Infinitely Many Solutions of Superlinear Elliptic Equation
نویسندگان
چکیده
and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every
منابع مشابه
Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملA Fourth Order Elliptic Equation with Nonlinear Boundary Conditions
In this paper we study the existence of infinitely many nontrivial solutions of the following problem, −∆2u = u in Ω, − ∂∆u ∂ν = f(x, u) on ∂Ω, and either ∂u ∂ν = 0 or ∆u = 0 on ∂Ω. We assume that f(x, u) is superlinear and either subcritical or a sublinear perturbation of the critical case. For the proof in the critical case we apply the concentration compactness method.
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملInfinitely Many Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a Ball
In this paper we show that a radially symmetric superlinear Dirichlet problem in a ball has infinitely many solutions. This result is obtained even in cases of rapidly growing nonlinearities, that is, when the growth of the nonlinearity surpasses the critical exponent of the Sobolev embedding theorem. Our methods rely on the energy analysis and the phase-plane angle analysis of the solutions fo...
متن کاملA Topological Approach to Superlinear Indefinite Boundary Value Problems
We obtain the existence of infinitely many solutions with prescribed nodal properties for some boundary value problems associated to the second order scalar equation ẍ+ q(t)g(x) = 0, where g(x) has superlinear growth at infinity and q(t) changes sign.
متن کامل